
The e-Linguistics Toolkit

Scott Farrar and Steven Moran
University of Washington
Department of Linguistics

Box 354340, Seattle, WA 98195
{farrar,stiv}@u.washington.edu

Abstract

In order to achieve the objectives of the e-Humanities
framework, it is necessary for individual humanities fields
to take charge and to create their own specific techniques
that apply to their own unique varieties of data. The e-
Linguistics Toolkit is presented to aid the move of linguis-
tics into this new digital era. We show that achieving this
requires data interoperability in terms of encoding, format,
and content. Once data are made interoperable, data ma-
nipulation in the form of validation and merging is neces-
sary. As one way to ensure immediate usefulness to the ordi-
nary working linguist, the toolkit offers data transformation
services among various working formats and lays the foun-
dations for intelligent search.

1. Introduction

The field of linguistics, from natural language process-
ing to typology, rests on its foundations of being data-
driven. Data are collected and analyzed, scrutinized, and
re-analyzed. Until lately, this task had to be carried out
manually, often making broad comparative work or data
processing on any large scale impossible or contentious at
best. With the rise of the Web as an important source and
medium for storing linguistic data, the situation has decid-
edly changed. With the Web, there has been much inter-
est in combining pre-Web computational approaches with
Web-based technologies. We refer to the processing of lin-
guistics data using computers (especially Web-based com-
puting) as e-Linguistics.

While situated squarely under the rubric of e-Humanities
and thus inheriting all the associated challenges, e-
Linguistics also faces the additional difficulty of combining
methods in natural language processing with the accumu-
lated knowledge of linguistics. Traditional linguistics has
influenced NLP. But ironically, linguistics as a whole has
not benefited from the advances in NLP. In order to con-

solidate these techniques and, at the same time, to achieve
broad-based linguistic data interoperability, we have devel-
oped the e-Linguistics Toolkit (ELTK) which is accessi-
ble at http://purl.org/linguistics/eltk. The toolkit addresses
these major issues:

• data interoperability in terms of encoding, format, and
content

• data manipulation (validation and merging)

• data transformation to various working formats

• leveraging NLP techniques to serve the whole of lin-
guistics

In this paper we introduce the e-Linguistics Toolkit by de-
scribing its major functionality and justifying our approach.

2. Problems and Possible Solutions

As in most of the humanities, a primary source for data
used in scholarship has been published print materials. A
long tradition of citation and de facto scholarship standards
have existed and have contributed to our successes. But re-
cently, since the Web has become a major source and forum
for data, the situation has changed dramatically. Individ-
ual researchers are self-publishing an extraordinary amount
of data on the Web. Print materials of the past 100 years
and older are slowly being digitized (usually scanned) and
posted to the Web, either as part of digital libraries or
smaller-scale projects. By embracing the Web as the pri-
mary forum for data exchange and its emerging standards
as part of our overall methodology, it is possible to scale the
scientific techniques developed over decades of linguistics
research to get at the knowledge of language. But there are
problems.

First, there is the problem of format. By format we re-
fer to character encoding and data structure format. Data
are rarely fully compatible with other data. For every piece



of software, there is a unique output format that is likely
incompatible with any other application. As a solution to
the format problem, projects such as the Text Encoding Ini-
tiative (TEI) [15] and the E-MELD project1 have responded
by recommending certain structured languages (SGML, and
now XML) to be used in conjunction with Unicode.

The second issue concerns content annotation. Due to
the variability of linguistics terminology and to the many
theoretical traditions, annotations are rarely fully compat-
ible. Terms do not have the same meaning across tradi-
tions, and data structures are often dissimilar. The content
problem is perhaps more challenging than that of the for-
mat problem, though it is also being addressed by other ef-
forts, e.g., [5]. The content problem can be illustrated by
the following example. Consider an information extraction
system whose task is to discover and aggregate instances of
linguistics data (e.g., lexical entries) found on the Web. Dis-
covery is difficult enough, but assume that a number of data
instances have been successfully identified and the task be-
comes that of aggregation. This involves combining entries
that are the same, or similar, such that the resulting system
contains no duplicate entries. Even if the structure of the
entry is consistent across data instances, lexical entries may
differ according to terminology, such as the part of speech
for the headword. In general, it is very difficult to determine
that n., Noun, and cn. refer in fact to the same concept.

Third, even if the format and content issues are solved,
data are copied and sometimes re-copied to suit various new
purposes. This path is imperfect. For instance, consider
the case of Wikipedia, the popular Web encyclopedia site.
While members of the Wikipedia community, by and large,
place a high priority on clarifying provenance and accuracy,
errors are bound to creep in: often intentional but well-
meaning alterations to data can be seen as errors. Even more
serious are the ever growing Web search engines that mine
data and re-purpose them for presentation or optimization.
As an example of this is the ODIN project [11]. Due to the
semi-supervised algorithms used to identify and process the
data, e.g., language identification (the assigning of a lan-
guage code to each bit of data), there are bound to be errors.
This does not, in general, distract from the tool’s usefulness,
but might give reason for researchers to worry, especially if
their data are misconstrued in any way.

Finally, any new approach or technology requires critical
mass. If too few in a community use the technology, then
it will usually fail. TEI recommendations (using SGML)
never caught on with the ordinary working linguist, likely
due to the unavailability of tools to produce it. The situation
with recent best-practice XML recommendations has been
only slightly better.

It has been evident, even with the successes of the TEI,
E-MELD, and other programs, linguists simply are not

1http://e-meld.org/

abandoning their print-based ways. There are many good
reasons for this. We demonstrate with the e-Linguistics
Toolkit that it is a first step in convincing the ordinary work-
ing linguist to adopt the stance taken by e-Humanities and
to produce data that is maximally interoperable. We are
confident in this, because critical mass can be achieved by
providing useful and novel services to linguists, convincing
them that using these tools is a path towards a better under-
standing of their field.

3. The e-Linguistics ToolKit

In this section we introduce the e-Linguistics ToolKit
(ELTK) as one possible solution towards field-wide
data interoperability and as an example of tech-
niques in e-Humanities. The toolkit is accessible at
http://purl.org/linguistics/eltk and is implemented in
Python. The ELTK currently consists of a set of Python
modules usable by interested programmers to create
e-Linguistics applications. In current form, the ELTK
consists of three main modules with three distinct func-
tions: (1) readers for the migration of data in various
working formats, (2) ontology for the storage and merging
of transformed data, and (3) display for transforming data
into various presentation formats.

3.1. Readers

The first module can be used to transform legacy data
and data in various working formats into an interoperable
store. The transformation is according to encoding, form,
and content. On the path to interoperability, all data are
eventually transformed into Unicode. There are utilities to
convert special ASCII character conventions used in Praat2

(e.g., Praat internal codes) and Elan3 (e.g., XSAMPA) to
Unicode IPA. Though not fully implemented, the ELTK will
be able to detect the semantics of characters. This is a prob-
lem when processing data in arbitrary, often unknown en-
codings. For instance, the character p might be used by a
Russian linguist in transcribing an /r/ phoneme.

In terms of form, the ELTK translates among various
working formats such as Praat TextGrid files, Elan eaf files,
and data in plain text files. At the moment Leipzig-style
glossing in plain text format is recognized. Several fun-
damental data types are handled, including lexicons, inter-
linear glossed text, paradigms, feature structures, and bib-
liographic citations. For example, the ELTK uses an in-
house built Web scaper to harvest linguistically-related bib-
liographic references from selected Web sites that allow
Web crawling. Extracted citations are written to a Bib-

2http://www.fon.hum.uva.nl/praat/
3http://www.lat-mpi.eu/tools/elan/



tex file, loaded into the BibtexReader, and are then trans-
formed into an RDF store where each bibliographical entry
is identified with a URI. We have chosen Bibtex because it
is a plain text non-proprietary format for marking up bib-
liographic data. It is widely used and third party software
makes it possible to include Bibtex bibliographies in pop-
ular word processors, such as Word. Also, an OWL spec-
ification for Bibtex already exists [8], which we make use
of.

As for content, all linguistic units and labels are mapped
to the GOLD [6] namespace in a supervised manner.
For instance, PST and Past would both be mapped to
gold:PastTense. Functionality is included to create map-
ping tables of annotation symbols and their corresponding
GOLD concepts. As the content issue is perhaps one of the
most problematic, how to map annotation symbols to con-
cepts is still on-going research.

The ELTK uses the popular Natural Language Toolkit
(NLTK)4; it is in fact modeled somewhat after the NLTK
as its name suggests. The ELTK depends on the NLTK,
for example, in order to parse the translation line in inter-
linear glossed text. The ELTK also uses the ISO 639-3 /
Ethnologue 15 language codes. We require that each data
element processed by the ELTK be linked to a particular
3-letter code, indentified by particular URIs.

3.2. Ontology

The functionality of the second module is to manage
(store and merge) the transformed data. This module inter-
faces with both a database and various ontologies. For this
purpose, the ELTK relies heavily on the RDFLib5 Python
library for manipulating RDF.

At the core of the ELTK is the idea of a Uniform Re-
source Identifier (URI) [3]. URIs are used to ensure that
everything that a linguist refers to is uniquely identifiable.
In keeping with this, the ELTK emphasizes URIs for ev-
erything: authors, bibliographical entries, data instances, as
well as linguistic concepts and relations. Second, the ELTK
uses the data model of the Resource Description Frame-
work (RDF) [10]. These two technologies are at the heart
of the Semantic Web, a much debated and often misunder-
stood enterprise. The major misunderstanding is that “the
Web community will do it for me”. But as nearly a decade
of Semantic Web buzz has taught us, no one is going to
transform the current Web into semantically interoperable
resources, that is, except for individual Web communities.
We have embraced these technologies in part because they
are being accepted by major players in software develop-
ment such as IBM, Microsoft, and Hewlett-Packard [7]. But

4http://nltk.org/doc/
5http://rdflib.net/

also, the simplicity of the data model appeals to our disci-
pline, namely that many of our fundamental data structures
can be easily adapted to fit into the RDF subject-predicate-
object model. But the primary reason why we believe the
Semantic Web movement is ultimately achievable is that it
emphasizes ontologies as the key to content interoperability.
As such, we have designed the ELTK to be compatible with
the General Ontology for Linguistic Description (GOLD)
[6]. GOLD is just one possible ontology for the ELTK, and
we hope that other ontologies will soon be available for the
purposes of e-Linguistics.

3.3. Display

Finally, the third module is responsible for the creation
of various output formats. These include various recom-
mended best-practice XML formats such as [4]. But im-
portantly, the ELTK is able to output working formats, e.g.,
in the form of TextGrid and eaf files, even when the input
source has a completely different structure. The module can
also output fundamental linguistic data types using various
presentation formats including HTML, LATEX, and PDF.

3.4. Design choices

The choice of a development language can ensure the
success of such a project, but it can also be its demise.
And since there is an increasing array of choices concerning
a development language for the Semantic Web, scripting,
and ontology programming, some comments regarding our
choices are in order. We have chosen Python as the primary
access language for the toolkit, but we utilize several Java
libraries for the more intensive processing. To accomplish
this, we use the JPype6 package as integration code to give
Python programs full access to Java class libraries.

There are two reasons why we chose Python. First,
Python is one of the most accessible languages for be-
ginning programmers (though a similar argument could be
made for Ruby and possibly Perl). This is an important con-
sideration, because we envision that our toolkit will serve
the ordinary working linguist who, in general, is not trained
for coding and often does not have the means to hire expert
programmers. Second, Python is used in the related NLTK
project (perhaps even for similar reasons) and we envision
a high degree of complementarity with our two projects.
At this time we have not chosen to incorporate our own
toolkit with the NLTK because the goals of the latter are
fundamentally different. Whereas the NLTK is designed for
teaching and research in mainstream computational linguis-
tics (which includes parsing, machine learning, and other
core algorithms), our project is intended to leverage those

6http://jpype.sourceforge.net/index.html



techniques to the benefit of linguistics in general. As com-
putational linguistics has seen huge successes over the last
two decades, those successes have not, as a rule, benefited
the entire field of linguistics. The e-Linguistics Toolkit is
intended to fill that gap.

As noted, Python affords a quicker developement cycle
for our purposes. For example with Python, it is easier to
process text than with Java. It is also easier to write unit
tests against our Python code. Granted, Python has its share
of drawbacks. There are certainly performance issues to
contend with, performance issues that are common to many
interpreted languages. But for our purposes, performance is
not as critical. More serious is that the development of key
Python libraries lags behind that for similar Java libraries.
This is likely due to Java’s huge user base. Python is just
now moving to a pure Unicode implementation, and key
components such as RDFLib have not yet been refactored
to accommodate this move. So, while using pure Python
would be feasible, we also want to take advantage of cutting
edge tools for Semantic Web deveopment, something for
which Java seems particularly well equiped.

It is clear that such a project could be carried out using
pure Java, C++ or other commonly used, non-interpreted
languages. After all, numerous Java libraries are available
for Semantic Web development, such as Jena [7] and the
OWLAPI [2]. The biggest reason why we have chosen
an interpreted language such as Python is the possibility
of meta-programming, or the ability to write code to ma-
nipulate code. But why is this useful? The biggest reason
why meta-programming is required, or at least highly de-
sirable, is to seemlessly access the domain model of OWL
with Python. In fact, we do not simply access the data
model, but import it into the Python programming envi-
ronment such that OWL classes, properties and individu-
als are created and manipulated alongside Python classes,
functions and instances. As inspired by [1], the OWL class
hierarchy can be directly imported into the Python class hi-
erarchy. The goal is to produce Python code that reflects
the OWL domain model, something that seems quite nat-
ural for a Semantic Web effort and which may be charac-
terized as a type of ontology-driven software design [9].
Ontology-driven software design and meta-programming it-
self are known to be quite difficult to achieve in statically
typed languages such as Java [9].

In general OWL is conceptually similar to the object-
oriented programming (OOP) paradigm, as used in Python.
Both OWL and OOP allow for classes and subclasses, along
with inheritance and limited multiple inheritance. Object
composition and class instantiation are also similar. But
OWL semantics is inconsistent with that of Python’s in a
number of key aspects. For example in most OOP lan-
guages, a class instance can only belong to a single class.
That is, in Python, the expression type(MyInstance)

can only yield a single class. This ensures the behavior of
instances based on the associated methods and variables of
the instantiated class. In OWL, however, a single individ-
ual (corresponding to an instance in OOP) can instantiate
multiple classes in the same knowledge base. Thus, to pro-
vide a linguistics example, a particular language can be an
indivual of both EndangeredLanguage and of Koiné at the
same time. In the ELTK we manage to integrate this facet
of OWL semantics in a fairly seemless way.

Our implementation differs somewhat from the Seth li-
brary of [1] in that we leave most of the computationally in-
tensive processing on the Java side. This includes RDF pro-
cessing. While the ELTK does use RDFLib for some RDF
processing, the parsing and writing of OWL files (regard-
less of the serialization) is handled via the OWLAPI. A key
reason to push such processing to the Java side concerns the
performance of Pellet [14], the reasoner that implements the
tableaux algorithm, and KOAN2 [12] the framework useful
for reasoning with large numbers of individuals.

4. Examples of Use

The Web has become the predominate resource for ob-
taining language data, whether it be secondary linguistic
field data or structured corpora. Since the majority of the
world’s languages lack tagged corpora for NLP applica-
tions, many data mining and language identification algo-
rithms have been developed to create under-resourced (or
low density) language corpora [13]. These corpora are used
to bootstrap algorithms for spelling and grammar checkers,
automatic generation of word lists and dictionaries, and the
creation of treebanks for further application development
in NLP. Web-derived text corpora, however, also provide a
rich resource for phonological investigation. Orthographic
properties of some languages allow textual data to be used
for phonological, and even morphophonological, research.
For example, Zuraw uses a Web-dervied corpus to investi-
gate frequency affects of Tagalog’s intervocalic tapping rule
[16]. Moreover, Zuraw’s study shows that a Web-based cor-
pus was preferable to a traditional newspaper-derived cor-
pus, because the informal writing of blogs and Web forums
contained data that extended novel phonological situations
in informal Tagalog.

With e-Linguistics, reader modules are used to validate
and transform phonemic and orthographic inventories into
IPA7 Unicode. The ontology module maps these resources
to a central ontology and merges them into an RDF store.
The ELTK can then be used to load these resources into the
Python programming environment to query across the data.
For example, the ELTK can be used to infer the phonemic
and orthographic relationships between disparate writing

7http://www.arts.gla.ac.uk/IPA/ipa.html



systems, making queries such as, ‘show me all graphemes
that are used to represent the phoneme /N/’.

Taking Web-scale phonological research one step fur-
ther, with e-Linguistics language data from languages with
phonemic writing systems can be migrated from their or-
thographies to an interoperable format such as the IPA.
Once phonological data are rendered interoperable, cross-
linguistic phonological questions can be asked at a featural
level. Semantic information is embedded in each IPA sym-
bol as an intersection of feature bundles, e.g. /p/ is voice-
less, bilabial and plosive. Many phonological questions
require large corpora of data, and phonologically-encoded
Web-scale resources provide statistically testable data for
investigating phonological patterns, variants and condition-
ing. For example, studying the frequency effects on phono-
logical rule application across word boundaries, or statisti-
cally modeling the phonological-relatedness of several lan-
guages in a group, becomes possible when resources are
available and interoperable. The ELTK makes this possible
by transforming data into an interoperable format, and then
merging it into an RDF store. It is our intent to expand the
current ontological model to include several phonological
theories. These theories may then be used to test compet-
ing phonological analyses across large amounts of merged
linguistic data.

Next, consider the scenario of collecting interlinear
glossed text with the goal of creating an RDF store. With e-
Linguistics the various readers may be used to process files
in common working formats: Praat, Elan or plain text for
example. To acommplish this the contents of these files
need to be converted to IPA Unicode. For this task we
have created a specialized character converter that will con-
vert these specialized encodings into Unicode. Once these
data are interoperable in terms of encoding and format, the
ELTK can be used to validate and merge these data into
RDF. Once again, using the ELTK to load the merged data
into the Python environment, questions can be programmat-
ically asked across the data.

Finally, by using the ELTK to transform data into an in-
teroperable format, the ordinary working linguist can eas-
ily output their data into other useful working formats
for data analysis and presentation. In this manner, the
ELTK provides a useful tool that also creates interopera-
ble resources in line with e-Linguistics’ goals and the e-
Humanities framework.

5. Discussion and Outlook

The e-Linguistics Toolkit has been developed to aid the
move of linguistics scholarship into a new digital era. We
have argued that achieving this requires data interoperabil-
ity in terms of encoding, format, and content. Once data
are made interoperable, data manipulation in the form of

validation and merging is necessary. As one way to ensure
usefulness, the ELTK offers data transformation to various
working formats. Finally, the ELTK leverages NLP tech-
niques to serve the whole of linguistics.

In order to achieve the objectives of the e-Humanities
framework, it is necessary for individual fields to take
charge and to create their own specific techniques that ap-
ply to their own data. One useful outcome of such a research
program is a cyberinfrastructure for linguistics. Only when
such an infrastructure is in place can truly advanced appli-
cations be written, such as ontology-driven, or intelligent
search. The e-Linguistics Toolkit is one step in this direc-
tion.

References

[1] M. Babik and L. Hluchy. Deep integration of python with
web ontology language. In Proceedings of the 2nd Workshop
on Scripting for the Semantic Web, 2006.

[2] S. Bechhofer, P. Lord, and R. Volz. Cooking the seman-
tic web with the owl api. In Proceedings of the 2nd Inter-
national Semantic Web Conference, ISWC, Sanibel Island,
Florida, 2003.

[3] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform re-
source identifiers (URI): Generic syntax. Technical Report
RFC 2396, IETF (Internet Engineering Task Force), Aug
1998.

[4] C. Bow, B. Hughes, and S. Bird. Towards a general model
of interlinear text. In Proceedings of the E-MELD Language
Digitization Project: Workshop on Digitizing and Annotat-
ing Texts and Field Recordings, Michigan State University,
2003.

[5] N. Calzolari, F. Bertagna, A. Lenci, and M. Mona-
chini. Standards and best practice for multilingual
computational lexicons and MILE (the multilingual
isle lexical entry). ISLE Deliverable D2.2-D3.2,
ISLE Computational Lexicons Working Group, 2002.
http://www.ilc.cnr.it/EAGLES96/isle/clwg doc/ISLE D2.2-
D3.2.zip (2006-07-09).

[6] S. Farrar and D. T. Langendoen. A linguistic ontology for
the Semantic Web. GLOT International, 7(3):97–100, 2003.

[7] Hewlitt-Packard. Jena2–A Semantic Web Framework, 2003.
http://hpl.hp.com/semweb/jena2.htm.

[8] N. Knouf. bibtex definition in web ontology language (owl)
version 0.1. Technical report, MIT, 2004.

[9] S. Koide and H. Takeda. Owl-full reasoning from an ob-
ject oriented perspective. In R. Mizoguchi, Z. Shi, and
F. Giunchiglia, editors, The Semantic Web ASWC 2006,
pages 263–277. Springer, Berlin / Heidelberg, 2006.

[10] O. Lassila and R. R. Swick. Resource Description Frame-
work (RDF) model and syntax specification. Recommen-
dation, W3C, Feb 1999. http://www.w3.org/TR/REC-rdf-
syntax/.

[11] W. D. Lewis. ODIN: A model for adapting and en-
riching legacy infrastructure. In Proceedings of the
e-Humanities Workshop held in cooperation with e-Science
2006: 2nd IEEE International Conference on e-Science



and Grid Computing, Amsterdam, 2006. Available
at http://faculty.washington.edu/wlewis2/papers/ODIN-
eH06.pdf (2006-10-29).

[12] B. Motik and U. Sattler. A comparison of reasoning tech-
niques for querying large description logic aboxes. In Logic
for Programming, Artificial Intelligence, and Reasoning:
Proceedings of the 13th International Conference, LPAR,
pages 227–241. Springer, 2006.

[13] R. J. Rayid Ghani and D. M. G. Mining the web to create
minority language corpora. In Proceedings of the 10th inter-
national conference on Information and knowledge manage,
pages 279–286, Athens, Georgia, 2001.

[14] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz.
Pellet: A practical owl-dl reasoner. Journal of Web Seman-
tics, 5(2):51–53, 2007.

[15] C. M. Sperberg-McQueen and L. Burnard, editors. Guide-
lines for Electronic Text Encoding and Interchange, TEI P4.
Text Encoding Initiative Consortium, Oxford, Providence,
Charlottesville, and Bergen, 2002.

[16] K. Zuraw. Using the web as a phonological corpus: a case
study from tagalog. In Proceedings of the 2nd International
Workshop on Web as Corpus, 2006.


